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Abstract
Introduction: Restoring functions to degraded ecosystems is needed to maintain a sustainable planet. Although restoration efforts are
widespread, the majority of restoration projects are not monitored, limiting the ability to assess outcomes, adaptively manage, and
improve future restoration projects. Remote sensing, with its multi-decadal data and global extent, offers new opportunities for resto-
ration monitoring. However, remote sensing data require analytical approaches that may be unfamiliar to ecologists and practitioners.
Objectives: We present a guide to applying time series analysis to assess restoration outcomes via change point detection, using
publicly available remote sensing data.
Methods: We demonstrate a range of time series analysis techniques for quantifying change at a river corridor restoration site.
Results: The tools we present can detect if and when change occurs, what type of changes might be expected if restoration were
performed at a similar site, and if restoration treatments cause measurable change. We introduce a flow diagram to help restoration pro-
fessionals determine which change point detection method is most useful for their needs and software with an example to get started.
Conclusions:We provide recommendations for choosing between different types of models for ecologists and practitioners interested
in monitoring, assessing, and communicating restoration outcomes.
Implications for Practice: Remote sensing time series cannot replace in situ data collection, but can provide low-cost ways for mon-
itoring high-level outcomes of restoration projects between visits. Available software packages for time series analysis provide com-
plementary, but different, information about restoration outcomes, and choosing the correct method for understanding change is
non-trivial. Continuous monitoring of sites is essential for quantifying change, and evaluating restoration impacts with remote sensing
time series can help to understand and communicate these changes. While we present these tools for analyzing remote sensing time
series, they are equally applicable to time series data collected in situ or any other pertinent source.
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Introduction

Humanity is rapidly pushing the Earth beyond its biophysical
limits, interrupting the Earth System processes that sustain life.
At all scales, ecosystem functions are at risk due to anthropo-
genic environmental change: land cover and land use change
(Pimm et al. 2014), climate change (Arneth et al. 2020),
alteration of hydrological processes (Wohl et al. 2024), and
unsustainable extraction and resource use (IPBES 2019). In this
era, humanity is faced with the incredibly daunting task of
monitoring, managing, and restoring the Earth System processes
that sustain life as we know it.

Concerted efforts to restore ecosystem processes are under-
way at local, regional, and global scales (Higgs et al. 2014;
Fischer et al. 2021). Restoration projects often seek to make eco-
systems more resilient in the face of increasing disturbances and
stressors, including mitigating the effects of a changing climate
(Krosby et al. 2018). Adaptive management is often lauded as a
successful approach to ecosystem restoration efforts, particu-
larly as projects evolve and outcomes vary (Bestelmeyer
et al. 2019). A framework for periodically revising restoration
activities based on social-ecological outcomes, adaptive
management requires a commitment to monitor restoration

outcomes and revise targeted practices (and expectations)
accordingly (Bestelmeyer et al. 2019). Approaching restoration
through the lens of restoring physical and ecological processes
(“process-based restoration”) aligns well with adaptive manage-
ment frameworks and acknowledges the variability of dynamic
systems rather than aiming to restore a system to a single refer-
ence state (Lengyel et al. 2020). Despite its potential, adaptive
management efforts like process-based restoration are
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challenging to implement well (Nagarkar & Raulund-Rasmus-
sen 2016), especially due to the need for extensive data collec-
tion, analysis, and interpretation.

Measurements of incremental changes over time are integral
to effective adaptive management of any restoration effort and
mandatory for monitoring variability in dynamic systems. Con-
tinuous measurements at inter- and intra-annual scales provide
insights into a system’s resistance and resilience to disturbances.
However, measuring changes that result from restoration pro-
jects requires resources that can come at the expense of imple-
menting new restoration projects (McKenna et al. 2023).
Continuous monitoring of subtle changes in ecosystems as they
occur is an even larger challenge as projects are implemented in
more remote regions and increase in number and size (Holl &
Brancalion 2020). These challenges lead to many projects with
irregular or non-existent monitoring plans, leaving little oppor-
tunity for managers to quantify and evaluate the outcomes. For
example, out of tens of thousands of river restoration projects,
only 10% include a monitoring plan (Bernhardt et al. 2005).

Time series of remote sensing data provide a solution to some
monitoring challenges because satellites continuously collect
consistent data over large areas. Applying remote sensing data
to quantify ecological change has never been easier with a vari-
ety of satellite-based ecosystem monitoring products now avail-
able, including annual maps of land cover, vegetation, biomass,
and carbon (Sturm et al. 2022). Publicly available, preprocessed
time series have opened low-cost avenues for ecological moni-
toring by removing the need for extensive processing before sat-
ellite data can be used. Novel sources of error, however,
complicate analysis and assessment of remotely sensed data
(Van Cleemput et al. 2025).

Change point analysis to identify the timing and magnitude
of changes is particularly relevant for restoration monitoring.
It can take advantage of long time series of data while
accounting for seasonality and noise present in satellite
observations. The literature presents a wide range of tech-
niques for change point detection, each varying in their
requirements and assumptions. Approaches to change point
detection can be distinguished by requirements for input data,
statistical assumptions, and relevance of output to different
research questions, and offer distinct advantages and disad-
vantages for change point detection.

While change point analysis can detect when the highest
probability of an ecosystem state change occurred, additional
analyses may be required to definitively attribute change to res-
toration interventions. The ideal way to assess causality, includ-
ing the impact assessment of restoration treatments, is to pair
treatments with equivalent control units. In observational stud-
ies, determining these control units can be difficult, if not impos-
sible (Shackelford et al. 2024). Control selection is complicated
because restoration treatments do not occur randomly, but are
often driven by social and biophysical settings leading to unob-
served biases that can confound inferences (Ribas et al. 2021).
Quasi-experimental techniques provide a solution to control
selection in observational studies by estimating a counterfactual
scenario, representing how a system would have behaved in the

absence of treatment (causal inference) (Simler-Williamson &
Germino 2022; Siegel & Dee 2025).

A major barrier to more widespread application of time series
analysis for restoration assessment is a lack of guidance on how
to apply change point analysis and quasi-experimental tech-
niques to satellite-based products. Here, we seek to address the
difficulties that arise when measuring the outcomes of ecosys-
tem restoration. We recognize that it can be difficult to compare
across sites with different treatments, restrictions, and reference
conditions. In this article, we (1) outline considerations for iden-
tifying appropriate analysis parameters and (2) demonstrate the
utility of various publicly available quantitative methods for
analyzing change at sites that aim to restore ecosystem pro-
cesses. We also aim to provide a glossary of terms relevant to
change point analysis for restoration, a list of change point anal-
ysis methods and their key features, a list of freely available
satellite-based products that could be used in different ecosys-
tems, and a “decision-tree” diagram of how and when to use dif-
ferent time series techniques.

Methods

Time Series Analysis Methods

Although there are many time series analysis methods available,
we focus on four that are straightforward to apply in R (R Core
Team 2021). Figure 1 provides guiding questions to lead the
restoration practitioner to the appropriate method for their
application: (1) Bayesian Change Point (BCP) (Erdman &
Emerson 2008), (2) Breaks For Additive Season and Trend
(BFAST) (Verbesselt et al. 2010), (3) Bayesian Estimator of
Abrupt change, Seasonal change, and Trend (BEAST) (Zhao
et al. 2019), and (4) Bayesian Structural Time Series (BSTS)
(Brodersen & Hauser 2017). The following sections provide
more detail about each method and highlight the particular dif-
ferences in their input data requirements (Table S1).

Bayesian Change Point. BCP returns the probability that the
mean value has changed for any given point in the time series.
Given a sample of observations over a period of time, BCP
can identify the magnitude and timing of change in a system.
It can be used in an exploratory manner to determine when an
ecosystem experienced a high probability of state change, and
can be helpful for practitioners to establish reasonable expecta-
tions for an ecosystem’s response to restoration. BCP can be
applied to univariate or multivariate data, and the parameter
values in different blocks of data need to be independent. AMar-
kov Chain Monte Carlo (MCMC) sampling approach is used to
estimate population parameters at each possible change point for
every point in the time series. The array of values resulting from
MCMC is then used to estimate real population parameters.
Importantly, BCP cannot handle missing values, so a choice
must be made prior to using this method to either impute missing
values or to delete them and proceed with an irregular time
series. If neither is appropriate, other analysis techniques should
be considered.
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Breaks for Additive andSeasonal Trend. Breaks for Additive
and Seasonal Trend (BFAST) decomposes time series into
trends, seasonal variation, and error, and can accurately respond
to highly variable inputs in the magnitude of both trend and sea-
sonality (Verbesselt et al. 2010). BFAST estimates constant sea-
sonal variation relying on a piecewise-linear model to describe
trend and a piecewise harmonic model to describe seasonality.
Through this estimation, this algorithm works with the entire
time series rather than needing to reduce datasets to specific sea-
sons (Verbesselt et al. 2010). BFAST identifies the point in time
a change occurred, the magnitude, and the direction of change
(Mendes et al. 2022). It can also identify multiple discrete
change points and broad changes within a single time series
without supervision (i.e. a known, defined event date)
(Zhu 2017). BFAST has been applied successfully in many dis-
ciplines and ecosystems and is widely used.

Shortcomings of BFAST include its limitation as a univariate
method, meaning only a single predictor, time, is considered to
explain variation in the outcome (Zhu 2017). Further, Li et al.
(2022) note that practitioners need to have the necessary domain
knowledge to assign the maximum number of change points

and minimum separation interval. Model parameters, such as
maximum number of iterations, can also affect change point
estimation, and BFAST outputs can vary dramatically depend-
ing on the parameters chosen. Further drawbacks of BFAST
include its inability to detect subtle changes, deal with missing
data, and its computational costs (Li et al. 2022) though these
have been addressed with different versions of the algorithm
including BFAST Monitor (Verbesselt et al. 2012; Li
et al. 2022) and BFAST Lite (Masili�unas et al. 2021). One final
consideration is that while the other algorithms we outline in this
paper are Bayesian, BFAST relies on frequentist methodologies,
including determining change based on an arbitrary threshold or
p value.

Bayesian Estimator of Abrupt Change, Seasonal Change,
and Trend. The Bayesian Estimator of Abrupt change, Sea-
sonal change, and Trend (BEAST) algorithm is a Bayesian
(see Box 1) ensemble model designed to detect abrupt changes
in the trend and/or seasonal components of a time series (Zhao
et al. 2019). BEAST constructs many piecewise-linear models

Figure 1. This flowchart illustrates how to choose a time series analysis method to investigate change at a restoration site. Starting at the top with “Did change
occur?”work through the questions to choose an analysis. If you already know that change occurred and when it began, skip straight to using Bayesian Structural
Time Series (BSTS) to find out if restoration caused the change observed. Otherwise, use Bayesian Change Point (BCP), Breaks For Additive Season and Trend
(BFAST), or Bayesian Estimator of Abrupt change, Seasonal change, and Trend (BEAST) to find out if change occurred and when.
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Box 1 Glossary of key terms for change point analysis for restoration projects.

Term Definition Plain language definition References

Change point A moment in a time series where a
change occurs. These changes can be
abrupt or gradual and detection type
and frequency differs based on the
algorithm used.

A moment when something in a pattern
shifts—like a sudden jump in
temperature or a change in how fast
something is happening. The change
can be big or small, sudden, or gradual.

Mendes et al. (2022);
Verbesselt et al. (2010)

Counterfactual A well-defined hypothetical scenario
different fromwhat actually happened.
For restoration, this would typically be
a hypothetical time series where an
intervention did not occur.

A “what if” scenario—imagining what
would have happened if something
had been different. For example, how
would ecological conditions be
different for a restored site if it had not
received an intervention.

Dashti et al. (2024); Siegel
and Dee (2025)

Frequentist
statistics

Statistical approach where probabilities
are assigned to the data. This approach
tests against a null hypothesis of no
effect and results in p values and
confidence intervals.

A way of analyzing data that focuses on
testing whether a pattern is just
random or actually meaningful. It does
this by comparing data to a “no effect”
scenario (the null hypothesis) and
using tools like p values and
confidence intervals to measure
uncertainty.

Fornacon-Wood et al. (2022)

Bayesian
statistics

Statistical approach where probabilities
are assigned to the hypotheses and
prior knowledge is taken into account.

A way of analyzing data that updates
what you already know with new
evidence. Bayesian outputs represent
how sure we are that a model is
supported by the data.

Fornacon-Wood et al. (2022)

Trend
component

Gradual change across a time series or
portion thereof (e.g. rising global
temperatures and ecological
succession).

The overall direction your data are
headed. For example, global
temperatures may vary by day, but
overall they are getting hotter.

Cleveland et al. (1990)

Seasonal
component

Variation in data around the trend line on
a seasonal frequency; often, this is
annual variation in climate or
phenology.

The predictable way that environmental
data changes throughout a year. For
example, temperatures are colder in
winter and warmer in summer each
year.

Cleveland et al. (1990)

Harmonics Sine and/or cosine waves optionally used
to model a seasonal component by
capturing an annual high and low
relative to the time series trend.

A commonway to show the shape of data
across a year. Every year will have one
or more peak value(s) and low value(s)
that alternate.

Zhao et al. (2019)

Error
component

Remaining variation in the data beyond
the seasonal and trend components.

The trend and seasonal estimates for data
will not be perfect because they have
to fit a specific shape, such as a wave
pattern, and real data are messy. Error
components are the difference
between model estimates and actual
data.

Cleveland et al. (1990)

Posterior
distribution

Best understood as a weighted average
between knowledge about the
parameters before data is observed
(which is represented by the prior
distribution) and the information about
the parameters contained in the
observed data (which is represented by
the likelihood function).

An updated belief about a system
considering what is already known
(the prior) and the new data. It can be
thought of as an educated guess that is
adjusted based on new evidence.
Posterior distributions represent
probabilities of model output, given
the data.

Glickman and van Dyk (2007)

Posterior
mean

A point estimate for the posterior
distribution in a Bayesian analysis,
representing the average of posterior
samples.

The best guess for a value after
combining what is known with the
new data. It represents the average
value of all the possible values.

Glickman and van Dyk (2007)

Latent state An unobservable system state estimated
from observable environmental data.

A hidden or alternative (ecosystem) state. Auger-Méthé et al. (2021)
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composed of line segments and harmonics to describe the trend
and seasonal components of a time series, respectively. BEAST
then averages these models, estimating the probability of each
detected change point in the time series trend or season. By aver-
aging, BEAST is capable of estimating nonlinear signals.
BEAST can also be used without the seasonal component,
which provides a way to calculate change points in the trend
with missing data. BEAST has been applied in study areas
around the globe to describe many types of remote sensing
time series changes, including land surface temperature
(Li et al. 2022), vegetation indices (Lyu et al. 2024), and precip-
itation indices (Di Nunno et al. 2024).

BEAST has a number of unique features compared to the
other algorithms presented, such as its capability of estimating
changes in the magnitude (i.e. annual extremes becoming more
similar/divergent), timing (i.e. annual shifts in maximums),
and/or harmonic order (i.e. a shift in the number of cycles per
cycle) of the seasonal trend of a time series. Further, BEAST
can handle missing values in the time series. The BEAST algo-
rithm assumes the number of change points is unknown through
a uniform prior and estimates the number of change points, a
useful feature if the number of change points is unknown, as
could easily be the case if other variables beyond restoration
are affecting the site.

However, BEAST has limitations that may be undesirable for
some analyses (Zhao et al. 2019). A large amount of computa-
tional power is required to estimate the many parameters in
BEAST models. For local computing environments, BEAST is
best suited to either global coarse-resolution or local high-
resolution remote sensing time series, as too many resources
would be needed otherwise. BEAST also struggles with noisy
data, which can result in reduced probabilities for pattern
changes, especially if the trend is weak (Zhao et al. 2019), and
may require the user to eliminate false breakpoints (methods in
Li et al. 2022). BEAST is a descriptive model; that is, it cannot
attribute change to any particular drivers. Finally, BEAST is cur-
rently a univariate model, though support for detecting common
change points in multivariate time series (i.e. multispectral
bands, ancillary climate information) is in development
(Hu et al. 2019).

Bayesian Structural Time Series. The BSTS algorithm tests
if a known event in a time series caused a change in the outcome
by constructing a counterfactual scenario. BSTS analyzes and
forecasts time series data by decomposing the data into key com-
ponents such as trend, seasonality, and an error component.
BSTS is a specialized framework that represents time series data
as observations of an underlying latent (hidden) state that
evolves over time (Haqbin & Khan 2024). BSTS is widely used
for causal impact analysis, allowing researchers to measure the
effect of specific events on a time series by generating a counter-
factual to represent the latent state of the system (Gianacas
et al. 2023). This flexibility makes BSTS particularly useful
for applications such as climate change (Haqbin & Khan 2024)
and ecosystem recovery (Dashti et al. 2024), where understand-
ing both gradual and punctuated change is crucial.

BSTS relies on three key techniques: the Kalman filter to esti-
mate trends and seasonality, spike-and-slab regression to iden-
tify the most important external variables that influence the
time series, and Bayesian model averaging to improve forecast-
ing by considering multiple possible models. These techniques
allow the model to adjust parameters over time, as well as to
handle a large number of predictors. This accurately reveals
the stochastic behavior of the time series, uncovering not
only correlations but also causal relationships within the
underlying data.

The effect of the intervention is estimated as the post-
intervention difference between the counterfactual and observed
outcome time series using Bayesian estimation methods (Dashti
et al. 2024). Unlike other counterfactual estimation techniques
that rely on matches or synthetic time series derived from real-
world observations, BSTS estimates the latent state had an event
not occurred. However, this approach has some limitations.
First, BSTS can be computationally intensive, especially with
large datasets. Second, BSTS is multivariate and requires inclu-
sion of predictor variables, beyond time, which require careful
selection based on domain knowledge. Inappropriate or irrele-
vant predictors may lead to the incorrect attribution of observed
outcomes to the intervention (Gianacas et al. 2023). We suggest
researchers use a directed acyclic graph to determine which vari-
ables can be represented in the model without introducing bias
into the model (Van Cleemput et al. 2025). Finally, BSTS
requires that the change point in the time series is known before-
hand, so it can generate a counterfactual time series starting from
the time of change. In the case of a restoration treatment, the
change point should be known a priori—most likely to be cho-
sen as the time restoration began. If the change point(s) in your
time series are unknown, BSTS can be paired with an explor-
atory algorithm like BEAST to first identify change points and
then generate a counterfactual time series (Dashti et al. 2024).

Data

We present a non-exhaustive list of remote sensing time series
data products that can be used to monitor landscape changes,
including information about each product that determines its
suitability for each of the time series analysis methods
(Table S2). While the methods we present are similarly applica-
ble with in situ and other data sources, remote sensing time
series are readily available and diverse with regards to what they
describe (e.g. vegetation rigor [Normalized Difference Vegeta-
tion Index (NDVI), Soil Adjusted Vegetation Index (SAVI),
etc.], burned area [Normalized Burn Ratio (NBR)], surface
water [Normalized Difference Water Index (NDWI), Modified
Normalized Difference Water Index (MNDWI), etc.]).

To demonstrate the applicability of the aforementioned
methods for time series monitoring, we use the Landsat Monthly
MRRMaid, an outcome dataset that estimates mesic vegetation
cover, developed specifically for monitoring the outcomes of
mesic ecosystem restoration efforts in the semiarid Intermoun-
tain Western United States (Kolarik et al. 2024). This dataset
is the output of machine learning regression models that esti-
mate the proportion of mesic vegetation present in each Landsat
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pixel, assumed to be indicative of ecologically available water,
and represents one choice of many similar products derived
from the Landsat time series that are readily available for moni-
toring land cover changes as a result of restoration activities or
policy changes (Table S2).

Case Study

River corridor restoration efforts are occurring globally to help
reestablish the physical and biological processes that have been
altered or interrupted by historical and contemporary human
alterations to the landscape (Skidmore &Wheaton 2022). In par-
ticular, many river corridors across the Western United States
are in highly degraded states due to the extirpation of beaver,
the creation of log flumes for timber extraction, mining legacies,
agricultural operations, and the modification and simplification
of valley bottoms and river channels that have created highly
efficient conduits for water to exit the system (Wohl 2021).

To demonstrate the use, outputs, and interpretation of the
methods presented, we apply them to a restoration site on
the Yankee Fork, a tributary to the Salmon River in Custer
County, Idaho, United States. The Yankee Fork Pond Series
3 Side-channel Project is an example of river restoration consid-
ered to be successful by project managers and the community
(Fig. 2). Between 1940 and 1952, mining companies heavily
dredged five and a half miles of floodplain to extract gold and
left piles of mine tailings and disconnected pools behind. The
floodplain was disconnected from the main channel, leaving
negligible salmonid habitat and little riparian vegetation
(Colyer 2021). As part of concerted efforts across the region to
restore habitat for native salmonids, Trout Unlimited partnered

with federal, state, and tribal agencies to increase lateral and lon-
gitudinal floodplain connectivity and instream habitat heteroge-
neity. This project involved historical channel reconstruction,
riparian plantings, and the addition of large wood to increase
complexity from 2012 to 2015 (C. Wood, personal communica-
tion). These activities also happened to create suitable habitat for
beaver, as they were observed returning to the reach in 2015. A
100-year flood event occurred in 2017, and in subsequent years
the project area seemed to have been transformed toward a wet-
ter state replete with mesic vegetation. With this detailed resto-
ration history and knowledge shared by project managers, we
can identify analysis techniques suitable for detecting changes
in the data that correspond with field observations.

We applied BCP, BFAST, BEAST, and BSTS to theMonthly
MRRMaid time series at the Yankee Fork restoration site to
quantify how the proportion of mesic vegetation changed after
restoration treatments. We present outputs with both aggregated
and individual pixel values. Where necessary, we imputed
values for missing observations and applied the algorithms
described in Section 2. We then provide recommendations for
the application of each analysis method based on their role as
exploratory, prediction, and inferential tools.

Results

Bayesian Change Point

Using the BCP approach, we observed a 25% probability of a
change in the mean value of mesic vegetation cover at the resto-
ration site at the onset of the channel reconstruction in 2012
(Fig. 3). Similarly, we see another low probability of change

Figure 2. (A) National Agricultural Imagery Program (NAIP, 1 m) image on 12 August 2004 (beginning of time series). (B) NAIP image on 29 September 2021
(post-time series). (C) False color (near infrared, red, green; 30 m) Landsat 8 composite image on 24 September 2021 with the project area shown in black in (A–
C). (D) Location of the case study.
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(29%) following the planting of riparian vegetation in 2013. We
observed the highest probability of change in the system follow-
ing the high flow flood event in 2017, where we estimate a 57%
probability of an overall change in the mean value of the time
series, corresponding with the state change observed by practi-
tioners. The pre-restoration mean is estimated to be 30% mesic
vegetation cover, and the post-flood mean is 47% mesic vege-
tation. The maps in Figure S1 show results of a univariate anal-
ysis similar to that in Figure 3, with independent algorithms
applied to each pixel through the time series. These maps show
spatial differences in restoration outcomes, including the larg-
est changes in mesic vegetation cover (>50%) in the down-
stream portion of the restoration reach. In Figure S2, we
demonstrate the application of a supporting predictor variable
(Palmer’s Drought Severity Index [PDSI]) in a multivariate
approach.

Breaks for Additive Seasonal and Trend

We identified a change point in the time series at the beginning
of the restoration process in 2012 using the BFAST algorithm
(Fig. 4). The results separate the data into seasonal, trend, and
error components, then identify abrupt changes in the overall
time series (Fig. S3). With this frequentist approach, we
observe a statistically significant (α = 0.05) difference in
trends before and after the intervention. Before the restoration,
BFAST estimated that mesic vegetation was increasing at a
rate of 0.7% per year. After the restoration, BFAST estimated
that mesic vegetation decreased by 9% of the total restoration
reach in the short term, aligning with the channel reconstruc-
tion timeline, but then began increasing at a rate of 3.9% per
year shortly thereafter. The maps shown in Figure S4 first show
the overall shift in vegetation cover that occurred from the

beginning of the time series in 2004 to the end in 2020 (panels
A and B). Panels (C) and (D) demonstrate declines in mesic
vegetation associated with the channel reconstruction in 2012
and also the subsequent rebounds that align with riparian veg-
etation plantings and large wood introduction from 2013 to
2015. We observed an increase in large-magnitude changes
further out in the floodplain following the return of beavers
and a large flood event in 2017.

Bayesian Estimator of Abrupt Change, Seasonal Change,
and Trend

The BEAST output displays a median of one change point in the
seasonal component of the time series. The algorithm estimated
a 16% chance of a change point following the flood event in
2017 (Fig. 5), implying a phenological change (either in magni-
tude or timing) in the vegetation at the restoration site. In our
case, BEAST estimated a 16% chance that annual mesic vegeta-
tion maximums are approximately 13% higher in the early sea-
son than in the later season, while before the seasonal change
point, mesic vegetation maximums were approximately 10%
higher in the peak of the growing season than in the end, indicat-
ing a possible shift in the vegetation community. In the trend
component, we observed a median number of three change
points that align with the onset of channel reconstruction in
2012 (46% probability of change), revegetation efforts in 2013
(33% probability of change), and the system response to the
flood event in 2017 (49% probability of change) (Fig. 5E). At
each of these detected change points, panel (H) describes the
directions of these changes, with a 49% probability that
the slope is decreasing following the channel reconstruction in
2012 (41% flat slope, 10% increasing). Following the vegetation
planting in 2013, we observed a 74% probability that the slope

Figure 3. BCP output. (A) Observed data (points) and posterior means (line) of mesic vegetation proportion (right y-axis). (B) The probability of a change point
in the mean of the time series at any given location (left y-axis).
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Figure 4. BFAST trend output. Observed data (black) plotted along with the fitted lines (blue), where the y-axis (labeled Vt) corresponds to vegetation
proportion, demonstrating the slopes before and after the restoration began (2012). Also included is the 95% CI of when the change point occurred (red). The
caption in the upper right explains that the estimated breakpoint (BP) is estimated at observation 33.

Figure 5. BEAST output. (A) Data (Y) with fitted model (solid line) and 95% credibility intervals (shaded region), (B) seasonal component, (C) the probability of
change in the seasonal component; Pr(scp), (D) the number of sine/cosine waves needed to characterize seasonal cycles(orders), (E) trend component,
(F) probability of change in trend; Pr(tcp), (G) the magnitude of the trend component (ordert), (H) the probabilities of the slope being positive (red), flat (green),
and negative (blue) (slpSign), (I) error (unexplained) variance in the bottom panel. Vertical dashed lines are estimated change points. The purple vertical line
indicates the beginning of restoration activities, and the blue vertical line a flood event. Please see Figures S6-S8 for alternate BEAST parameterizations.
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has changed to positive (26% flat, 0% negative). We observed
another slope change following the flood event in 2017, where
the models estimate an 87% probability that the slope has chan-
ged again, although the slope maintains a positive direction
(13% flat, 0% negative). Figure S5 shows the locations of the
single largest magnitude of change in the vegetation trajectory
(panel A), along with the probability of this change (panel B)
and when it occurred (panel C).

Bayesian Structural Time Series

The BSTS outputs indicate a high probability of the intervention
causing change in mesic vegetation (Fig. 6). The observed pro-
portion after the intervention was 0.38 on average; whereas the
predicted values, assuming no intervention, were 0.29 on aver-
age (95% credibility interval [CrI] 0.28–0.30; Fig. 6). In general
terms, the intervention led to a 31% increase (25–38% CrI). Fur-
thermore, the posterior probability of a causal effect is extremely
high at 99.8%, strongly suggesting that the observed changes
were not due to random fluctuations but rather a direct result
of the restoration.

In Figure 6A, we interpreted the data alongside the counter-
factual predictions for the post-treatment period. We observed
that after the intervention date, the actual data begins to deviate
from the expected trend (95% Crl), indicating a disruption in the
regular patterns and a noticeable impact of the intervention.

Subsequently, Figure 6B shows the difference between
observed data and counterfactual predictions; this is the point-
wise causal effect where the 95% CrI of the departure from the
counterfactual scenario does not include zero following the
flood event that occurred in 2017. Finally, the cumulative impact
(Fig. 6C) follows a similar pattern as described using the previ-
ous methods: an initial dip following the channel reconstruction
in 2012 followed by a rebound and a steady increase in mesic
vegetation cover thereafter. The cumulative impact describes
the sum of the pointwise differences following the intervention.

Data availability plays a crucial role in the selection of cer-
tain models. In this scenario, we evaluated the performance of
BSTS by omitting the missing data from 2016 to assess the
model’s reliability. Despite this adjustment, we observed a
similar pattern, which could be corroborated by obtaining
the posterior probability of a causal effect (99.8%), suggest-
ing the model’s robustness in handling data gaps. Figure 7
highlights the shifts in mesic vegetation across space, associ-
ated with the 2012 channel reconstruction and the subsequent
recoveries aligning with riparian vegetation plantings and the
addition of large wood and structures. The estimated counter-
factual scenario for September 2020 is shown in panel
(B) and demonstrates the “business-as-usual” scenario,
where the pointwise differences are shown in panel (C),
which clearly show mesic vegetation increases within the
project boundary.

Figure 6. BSTS output. (A) Observed data (black) and the modeled predictions for the time series (blue shading, pre-intervention indicated left of dotted line, post
to the right) and the 95% credibility interval for the predictions with mesic vegetation proportion on the y-axis. (B) The difference between observations and the
modeled time series with difference in mesic vegetation on the y-axis. (C) The cumulative (sum of middle panel) effect of the intervention. The purple vertical line
indicates the beginning of restoration activities, and the blue vertical line a flood event. See Figure S9. for output without accounting for the missing data period.
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Discussion

Restoration projects rarely include long-term monitoring,
making it difficult to evaluate outcomes. Satellite time series
offer a way to track ecosystem change, but using them effec-
tively requires models that can detect and interpret those
changes. We demonstrate how four contemporary time series
analyses—BCP, BFAST, BEAST, and BSTS—can detect eco-
logical signals in satellite-derived time series, with relevance
to restoration. This suite of models offers a starting point for
practitioners to assess long-term restoration outcomes, tailored
to their data and objectives.

Results from the case study we present reveal how change
point models vary in their goals, sensitivity, and assumptions,
as well as what each of these methods offers in terms of commu-
nication of restoration outcomes. All uses of remote sensing
datasets to communicate outcomes at local scales should be cor-
roborated with local knowledge or in situ measurements. BCP
and BEAST identified moderate probabilities of change follow-
ing active restoration interventions (e.g. channel reconstruction
and revegetation) and a more pronounced shift following the
2017 flood, supporting observations from project managers.
BFAST estimated significant breaks in the trend component at
the time of intervention and showed a steeper increase in mesic
vegetation cover post-flood, while BEAST provided insight into
both phenological (seasonal) and trend shifts in the system.
Finally, BSTS offered strong evidence for a causal effect of res-
toration activities.

Taken together, these analyses suggest that the Yankee Fork
restoration catalyzed a directional ecosystem shift toward a wet-
ter, more mesic state—consistent with both field observations as
described by the project manager and theoretical expectations of
process-based restoration. We observe a change in trend at the
onset of restoration in 2012 with both BFAST and BEAST.
With BCP, we observe a change in the mean mesic vegetation
cover and habitat following the beaver colonization and subse-
quent flood in 2017 as described by the project manager. With
the BSTS, we infer that without the restoration activities, the
vegetation in this reach would indicate a much drier, less con-
nected valley bottom. The pixel-level applications of each
method revealed spatial heterogeneity in system responses,
underscoring the value of combining remote sensing with robust
statistical tools. These results also show how restoration out-
comes can be incremental, nonlinear, and vary across space with
additive effects from multiple interventions and natural events
contributing to long-term ecological change. As time series from
high-resolution data collected with newer platforms get longer,
the ability to describe restoration outcomes with greater preci-
sion will also increase.

A first step in selecting between different change point tech-
niques is to identify the main objective of the analysis. If the goal
is to explore potential state changes and interannual seasonal
variation is less important, BCP is appropriate. For the Yankee
Fork, BCP outputs identify two periods of relatively stable
means: before restoration and after a large flood event. The

Figure 7. BSTS outputs on a per pixel basis with the project area overlaid in black in all panels. (A) The observed mesic vegetation proportion in September 2020.
(B) The counterfactual, latent state predictions for September 2020. (C) The pointwise differences in each pixel across the case study region.
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highest posterior probability of state change after a large flood
followed by low posterior probabilities and a horizontal line
representing posterior means is indicative of a new stable state.
Between these, a period of disturbance from restoration and a
changing system is characterized in the outputs by several small
peaks in posterior probability and a rising posterior mean, indi-
cating dynamic conditions. Although BCP does not evaluate
changes in trend explicitly, the output can be qualitatively inter-
preted to identify the time period during which change is occur-
ring in addition to the point in which the highest probability of a
new stable state is reached. The simplicity of its output may be
desirable for practitioners presenting to a lay audience.

If the goal of analysis is to identify a point when change
started (e.g. change in trend), either BFAST or BEAST can be
implemented. One application of BFAST and BEAST could
be to test whether the algorithm-identified change point matches
the known timing of a restoration intervention. For the Yankee
Fork, BEAST identified three changes in trend in the time series
that corresponded to discrete events at the site in 2012, 2013,
and 2017, as well as directional estimates for each of these
changes. BFAST is nearly a decade older, but is still widely used
and has borne modified versions such as BFAST monitor and
BFAST Lite (Verbesselt et al. 2012; Masili�unas et al. 2021).
BFAST provides a simpler output and identified only a single
change point at the start of channel reconstruction in 2012.

An important difference between BFAST, BEAST, and BCP
lies in their ability to detect seasonal changes. BFAST and
BEAST are capable of modeling interannual variation, a defining
characteristic of many ecosystems. Variation in temperature, pho-
toperiod, wind, and precipitation among years leads to variations
in human activity, resource pulses, and vegetation greenness
(White & Hastings 2020). These are often key outcomes or indi-
cators of restoration success, including resource availability
synced with species migration timing (Barker et al. 2022), transi-
tion from xeric to mesic phenologies surrounding restored stream-
beds (Wohl 2021), and shifted phenological timings that indicate
the absence of early-germinating exotic plant species
(Wainwright et al. 2012). Changes in seasonal timing are of par-
ticular interest in the context of climate change, such as detecting
changes in the timing of the last frost of the year or the timing of
snowmelt in spring (Li et al. 2024). Changes in seasonal patterns
were previously difficult to monitor because they required multi-
ple data collection efforts per year, but time series remote sensing
provides low-cost continuous monitoring that makes this type of
seasonal change detection possible.

BFAST, BEAST, and BCP are useful for exploratory pur-
poses, including identifying change in time series data. How-
ever, without appropriate reference sites, it is impossible to
infer whether change occurred due to restoration activities. We
recommend the BSTS as a way to estimate a counterfactual out-
come. Counterfactual outcome estimation methods such as
matching, differences in differences, and regression discontinu-
ity design are increasingly used to minimize hidden biases asso-
ciated with ecological treatments (Siegel & Dee 2025). BSTS
provides a dynamic estimation of causal impacts, making it par-
ticularly effective for capturing gradual ecological changes,
such as those resulting from conservation policies. Because

BSTS models latent state components, it is relatively resilient
to baseline mismatches where other counterfactual estimation
methods that require direct control units are not (Brodersen &
Hauser 2017). Furthermore, its adaptive counterfactual
approach dynamically reweights hypothetical control units over
time, enhancing accuracy when variable relationships evolve.
These advantages position BSTS as a particularly powerful tool
for analyzing interventions with delayed, nonlinear, or context-
dependent effects that are prevalent in ecological systems.

The complexity of all four of the algorithms we explore
raises a question: how much do practitioners actually need to
understand the inner workings of these models to apply them?
In ecology, a widespread gap exists between statistical training
and the rapid evolution of quantitative methods, potentially
limiting adoption of powerful but technically demanding ana-
lyses (Touchon & McCoy 2016). An advantage of BCP,
BEAST, BSTS, and BFAST is that all are well-documented,
flexible, and widely used. Researchers commonly employ
them for a wide variety of environmental outcomes with vary-
ing estimates of a variety of disturbance events, some with
multiple changes (Mendes et al. 2022; Dashti et al. 2024; Di
Nunno et al. 2024).

One notable difference is that BFAST uses a frequentist
approach, while the others use a Bayesian approach. The preva-
lence of Bayesian statistics in time series analysis stems from
their ability to fit complex models with contemporary Monte
Carlo algorithms, including models with nonlinear and latent
states common in ecological time series (Clark 2005). The fre-
quentist approach used to identify change points in the BFAST
algorithm involves p values, with a default threshold of 0.05—
a convention increasingly scrutinized (Amrhein et al. 2019). In
the context of predicting change, such thresholds can lead to
the exclusion of variables that improve predictive performance
(Tredennick et al. 2021). Still, the familiarity of frequentist
methods may make BFAST results more accessible to many sci-
entists and practitioners. In contrast, Bayesian posterior proba-
bilities can be directly interpreted as the probability of a model
given the data, a formulation some consider more intuitive
(McElreath 2020). Regardless of paradigm, clear communica-
tion and appropriate interpretation of uncertainty are essential
when evaluating model-based outcomes of restoration projects
(Brudvig & Catano 2021).

All remote sensing analyses have inherent challenges due to
the uncertainty that results from aggregating land cover to dis-
crete pixels and inescapable error in classification. While user-
friendly products with easily interpretable land cover products
are increasingly available, it is important to keep in mind that
all of these products present sources of uncertainty that are
absent in on-the-ground measurements. We advocate for using
the outputs of tools we present in this study as only one line of
evidence of restoration outcomes, particularly when trying to
infer ecosystem state changes, as there are no substitutes for
ground survey or local expert knowledge. Most time series data
available at the landscape level are derived from moderate or
coarse-resolution imagery, leading to mixed pixels and biased
fractional estimates (Applestein & Germino 2022). To further
complicate these limitations, researchers commonly mask
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clouds, shadows, and smoke from input images, which leads to
missing data and irregular time series (Zhu &Woodcock 2014).
Many of the available analysis tools, including several we high-
light in this paper, are equipped to handle missing data in the
time series (e.g. BFAST, BEAST, and BSTS), but some are
not (e.g. BCP). Further, some of the methods we review in this
paper require or benefit from the use of ancillary predictors of
the outcome in a multivariate approach (e.g. BCP, BSTS).
Choosing datasets and scales to represent these drivers can also
be difficult, especially when there are spatial or temporal mis-
matches among outcome processes and available data (Stuber
et al. 2017). State space models, including the Kalman filter
implemented by the BSTS algorithm, address the challenge of
remote sensing error by modeling a latent state that represents
the “true” state of the system. A productive avenue for future
work could involve fitting state space models by combining
satellite-based remote sensing with data that is more accurate
but lacks spatiotemporal coverage, such as aerial lidar
(Caughlin et al. 2021).

In this paper we outline and suggest ways to incorporate
change point detection and counterfactual estimation into resto-
ration monitoring, but many questions remain as to how further
to utilize these tools. One future avenue of investigation is how
to use outcomes of projects across space and time to better pre-
dict plausible restoration outcomes before a project is imple-
mented (Brudvig & Catano 2021). Reducing the uncertainty of
outcomes, inferences, and data sources holds great potential
for improving our understanding of restoration processes and
is an ongoing issue for ecological remote sensing endeavors
(Van Cleemput et al. 2025). The analyses we present are rela-
tively straightforward, but more complexity could be added to
improve model fit and performance. Finally, researchers and
land managers could utilize various change point analyses to
elucidate and avoid detrimental regime shifts (Bauch
et al. 2016). Detecting potential changes at all scales will help
support global efforts led by the UN Decade on Ecosystem Res-
toration and protect global systems from irreversible changes
(Aronson et al. 2020).

Conclusion

Our findings reinforce the critical role of sustained monitoring in
adaptive restoration frameworks. By leveraging freely available
satellite products and appropriate statistical methods, practi-
tioners can detect subtle shifts, evaluate intervention timing
and magnitude, and establish more reliable links between resto-
ration actions and ecological outcomes. The methods we
present—when paired thoughtfully with restoration histories—
offer a scalable, transparent, and repeatable framework for
evaluating change across diverse landscapes and restoration
strategies.

Acknowledgments

The authors acknowledge NASA FINESST Graduate Student
Fellowship award 20-EARTH20-340, USDA Data Science for
Food and Agriculture Systems 2022-11619, NASA Ecological

Conservation Applied Sciences 80NSSC25K7236, NASA Eco-
logical Forecasting Applied Sciences 80NSSC21K1642, and
National Science Foundation BIO2207158.

LITERATURE CITED
Amrhein V, Greenland S, McShane B (2019) Scientists rise up against statistical

significance. Nature 567:305–307. https://doi.org/10.1038/d41586-019-
00857-9

Applestein C, Germino MJ (2022) How do accuracy and model agreement vary
with versioning, scale, and landscape heterogeneity for satellite-derived
vegetation maps in sagebrush steppe? Ecological Indicators 139:108935.
https://doi.org/10.1016/j.ecolind.2022.108935

Arneth A, Shin Y-J, Leadley P, Rondinini C, Bukvareva E, KolbM, Midgley GF,
Oberdorff T, Palomo I, Saito O (2020) Post-2020 biodiversity targets need
to embrace climate change. Proceedings of the National Academy of
Sciences of the United States of America 117:30882–30891. https://doi.
org/10.1073/pnas.2009584117

Aronson J, Goodwin N, Orlando L, Eisenberg C, Cross AT (2020) A world of
possibilities: six restoration strategies to support the United Nation’s
Decade on Ecosystem Restoration. Restoration Ecology 28:730–736.
https://doi.org/10.1111/rec.13170

Auger-Méthé M, Newman K, Cole D, Empacher F, Gryba R, King AA, et al.
(2021) A guide to state–space modeling of ecological time series.
Ecological Monographs 91:e01470. https://doi.org/10.1002/ecm.1470

Barker KJ, Xu W, Van Scoyoc A, Serota MW, Moravek JA, Shawler AL,
Ryan RE,Middleton AD (2022) Toward a new framework for restoring lost
wildlife migrations. Conservation Letters 15:e12850. https://doi.org/10.
1111/conl.12850

Bauch CT, Sigdel R, Pharaon J, AnandM (2016) Early warning signals of regime
shifts in coupled human–environment systems. Proceedings of the National
Academy of Sciences of the United States of America 113:14560–14567.
https://doi.org/10.1073/pnas.1604978113

Bernhardt ES, Palmer MA, Allan JD, Alexander G, Barnas K, Brooks S, et al.
(2005) Synthesizing U.S. river restoration efforts. Science 308:636–637.
https://doi.org/10.1126/science.1109769

Bestelmeyer BT, Burkett LM, Lister L, Brown JR, Schooley RL (2019)
Collaborative approaches to strengthen the role of science in rangeland conser-
vation. Rangelands 41:218–226. https://doi.org/10.1016/j.rala.2019.08.001

Brodersen KH, Hauser A (2017) CausalImpact: inferring causal effects using
Bayesian structural time-series models. 1.3.0. https://cran.r-project.org/
web/packages/CausalImpact/CausalImpact.pdf (accessed 18 Aug 2025)

Brudvig LA, Catano CP (2021) Prediction and uncertainty in restoration science.
Restoration Ecology 32:e13380. https://doi.org/10.1111/rec.13380

Caughlin TT, Barber C, Asner GP, Glenn NF, Bohlman SA, Wilson CH (2021)
Monitoring tropical forest succession at landscape scales despite uncer-
tainty in Landsat time series. Ecological Applications 31:e02208. https://
doi.org/10.1002/eap.2208

Clark JS (2005) Why environmental scientists are becoming Bayesians. Ecology
Letters 8:2–14. https://doi.org/10.1111/j.1461-0248.2004.00702.x

Cleveland RB, Cleveland WS, McRae JE, Terpenning I (1990) STL: a seasonal-
trend decomposition procedure based on Loess. Journal of Official Statis-
tics 6:3–33

Colyer W (2021) Reflecting on the Yankee Fork project – Trout Unlimited.
https://www.tu.org/magazine/conservation/reflecting-on-the-yankee-fork-
project/ (accessed 17 Apr 2023)

Dashti H, Chen M, Smith WK, Zhao K, Moore DJP (2024) Ecosystems distur-
bance recovery: what it was or what it could have been? Geophysical Research
Letters 51:e2024GL109219. https://doi.org/10.1029/2024GL109219

Di Nunno F, De Marinis G, Granata F (2024) Analysis of SPI index trend varia-
tions in the United Kingdom – a cluster-based and Bayesian ensemble algo-
rithms approach. Journal of Hydrology: Regional Studies 52:101717.
https://doi.org/10.1016/j.ejrh.2024.101717

Restoration Ecology12 of 14

Time series analysis to assess restoration

 1526100x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/rec.70184 by C

arolyn K
oehn - B

O
ISE

 ST
A

T
E

 U
N

IV
E

R
SIT

Y
 A

L
B

E
R

T
SO

N
S L

IB
R

A
R

Y
 , W

iley O
nline L

ibrary on [27/08/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1038/d41586-019-00857-9
https://doi.org/10.1038/d41586-019-00857-9
https://doi.org/10.1016/j.ecolind.2022.108935
https://doi.org/10.1073/pnas.2009584117
https://doi.org/10.1073/pnas.2009584117
https://doi.org/10.1111/rec.13170
https://doi.org/10.1002/ecm.1470
https://doi.org/10.1111/conl.12850
https://doi.org/10.1111/conl.12850
https://doi.org/10.1073/pnas.1604978113
https://doi.org/10.1126/science.1109769
https://doi.org/10.1016/j.rala.2019.08.001
https://cran.r-project.org/web/packages/CausalImpact/CausalImpact.pdf
https://cran.r-project.org/web/packages/CausalImpact/CausalImpact.pdf
https://doi.org/10.1111/rec.13380
https://doi.org/10.1002/eap.2208
https://doi.org/10.1002/eap.2208
https://doi.org/10.1111/j.1461-0248.2004.00702.x
https://www.tu.org/magazine/conservation/reflecting-on-the-yankee-fork-project/
https://www.tu.org/magazine/conservation/reflecting-on-the-yankee-fork-project/
https://doi.org/10.1029/2024GL109219
https://doi.org/10.1016/j.ejrh.2024.101717


Erdman C, Emerson JW (2008) Bcp: an R package for performing a Bayesian
analysis of change point problems. Journal of Statistical Software 23:
1–13. https://doi.org/10.18637/jss.v023.i03

Fischer J, Riechers M, Loos J, Martin-Lopez B, Temperton VM (2021) Making the
UNDecade on Ecosystem Restoration a social-ecological endeavour. Trends
in Ecology&Evolution 36:20–28. https://doi.org/10.1016/j.tree.2020.08.018

Fornacon-Wood I, Mistry H, Johnson-Hart C, Faivre-Finn C, O’Connor JPB,
Price GJ (2022) Understanding the differences between Bayesian and fre-
quentist statistics. International Journal of Radiation Oncology, Biology,
Physics 112:1076–1082. https://doi.org/10.1016/j.ijrobp.2021.12.011

Gianacas C, Liu B, Kirk M, Di Tanna GL, Belcher J, Blogg S, Muscatello DJ
(2023) Bayesian structural time series, an alternative to interrupted time
series in the right circumstances. Journal of Clinical Epidemiology 163:
102–110. https://doi.org/10.1016/j.jclinepi.2023.10.003

Glickman ME, van Dyk DA (2007) Basic Bayesian methods. Pages 319–338. In:
AmbrosiusWT (ed) Topics in biostatistics. Humana Press, Totowa, New Jersey

Haqbin SRK,KhanAA (2024) Bayesian structural time seriesmodels for predicting
the CO2 emissions in Afghanistan. Annals of Data Science 11:2235–2252.
https://doi.org/10.1007/s40745-023-00510-3

Higgs E, Falk DA, Guerrini A, Hall M, Harris J, Hobbs RJ, Jackson ST,
Rhemtulla JM, ThroopW (2014) The changing role of history in restoration
ecology. Frontiers in Ecology and the Environment 12:499–506. https://
doi.org/10.1890/110267

Holl KD, Brancalion PHS (2020) Tree planting is not a simple solution. Science
368:580–581. https://doi.org/10.1126/science.aba8232

Hu T, Li Y, Zhang X, Zhao K (2019) Rbeast: Bayesian change-point detection
and time series decomposition. 1.0.1. https://cran.r-project.org/web/
packages/Rbeast/Rbeast.pdf (accessed 18 Aug 2025)

IPBES (Intergovernmental Science-Policy Platform on Biodiversity and Ecosys-
tem Services) (2019) Global assessment report of the Intergovernmental
Science-Policy Platform on Biodiversity and Ecosystem Services. https://
www.ipbes.net/system/files/2021-06/2020%20IPBES%20GLOBAL%
20REPORT(FIRST%20PART)_V3_SINGLE.pdf (accessed 15 Jan 2025)

Kolarik NE, Shrestha N, Caughlin T, Brandt JS (2024) Leveraging high resolu-
tion classifications and random forests for hindcasting decades of mesic
ecosystem dynamics in the Landsat time series. Ecological Indicators
158:111445. https://doi.org/10.1016/j.ecolind.2023.111445

KrosbyM, Theobald DM, Norheim R,McRae BH (2018) Identifying riparian cli-
mate corridors to inform climate adaptation planning. PLoS One 13:
e0205156. https://doi.org/10.1371/journal.pone.0205156

Lengyel S, Mester B, Szabolcs M, Szepesv�ary C, Szab�o G, Poly�ak L, et al. (2020)
Restoration for variability: emergence of the habitat diversity paradigm in
terrestrial ecosystem restoration. Restoration Ecology 28:1087–1099.
https://doi.org/10.1111/rec.13218

Li J, Li Z-L, Wu H, You N (2022) Trend, seasonality, and abrupt change detec-
tion method for land surface temperature time-series analysis: evaluation
and improvement. Remote Sensing of Environment 280:113222. https://
doi.org/10.1016/j.rse.2022.113222

Li X, Guo W, He H, Li S, Liu T (2024) Changes in phenological events and long-
term seasonality in response to climate change and the ecological restoration
in China’s Loess Plateau. Land Degradation & Development 35:520–533.
https://doi.org/10.1002/ldr.4934

Lyu R, Pang J, Zhang J, Zhang J (2024) The impacts of disturbances on
mountain ecosystem services: insights from BEAST and Bayesian net-
work. Applied Geography 162:103143. https://doi.org/10.1016/j.
apgeog.2023.103143

Masili�unas D, Tsendbazar N-E, Herold M, Verbesselt J (2021) BFAST lite: a light-
weight break detection method for time series analysis. Remote Sensing 13:
3308. https://doi.org/10.3390/rs13163308

McElreath R (2020) Statistical rethinking: a Bayesian course with examples in R
and STAN. CRC Press, New York

McKenna PB, Lechner AM, Hernandez Santin L, Phinn S, Erskine PD (2023)
Measuring and monitoring restored ecosystems: can remote sensing be
applied to the ecological recovery wheel to inform restoration success?
Restoration Ecology 31:e13724. https://doi.org/10.1111/rec.13724

MendesMP,Rodriguez-GalianoV,AragonesD (2022) Evaluating theBFASTmethod
to detect and characterise changing trends inwater time series: a case study on the
impact of droughts on the Mediterranean climate. Science of the Total Environ-
ment 846:157428. https://doi.org/10.1016/j.scitotenv.2022.157428

Nagarkar M, Raulund-Rasmussen K (2016) An appraisal of adaptive manage-
ment planning and implementation in ecological restoration: case studies
from the San Francisco Bay Delta, U.S.A. Ecology and Society 21:43.
https://doi.org/10.5751/ES-08521-210243

Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, Raven PH,
Roberts CM, Sexton JO (2014) The biodiversity of species and their rates of
extinction, distribution, and protection. Science 344:1246752. https://doi.
org/10.1126/science.1246752

R Core Team (2021) R: the R project for statistical computing. https://www.r-
project.org/ (accessed 18 Dec 2023)

Ribas LGS, Pressey RL, Bini LM (2021) Estimating counterfactuals for evalua-
tion of ecological and conservation impact: an introduction to matching
methods. Biological Reviews 96:1186–1204. https://doi.org/10.1111/brv.
12697

Shackelford N, Dudney J, Stueber MM, Temperton VM, Suding KL (2024) Mea-
suring at all scales: sourcing data for more flexible restoration references.
Restoration Ecology 32:e13541. https://doi.org/10.1111/rec.13541

SiegelK,DeeLE (2025)Foundations and future directions for causal inference in ecolog-
ical research. Ecology Letters 28:e70053. https://doi.org/10.1111/ele.70053

Simler-Williamson AB, Germino MJ (2022) Statistical considerations of nonran-
dom treatment applications reveal region-wide benefits of widespread post-
fire restoration action. Nature Communications 13:3472. https://doi.org/10.
1038/s41467-022-31102-z

Skidmore P, Wheaton J (2022) Riverscapes as natural infrastructure: meeting
challenges of climate adaptation and ecosystem restoration. Anthropocene
38:100334. https://doi.org/10.1016/j.ancene.2022.100334

Stuber EF, Gruber LF, Fontaine JJ (2017) ABayesian method for assessing multi-
scale species-habitat relationships. Landscape Ecology 32:2365–2381.
https://doi.org/10.1007/s10980-017-0575-y

Sturm J, Santos MJ, Schmid B, Damm A (2022) Satellite data reveal differential
responses of Swiss forests to unprecedented 2018 drought. Global Change
Biology 28:2956–2978. https://doi.org/10.1111/gcb.16136

Touchon JC, McCoy MW (2016) The mismatch between current statistical prac-
tice and doctoral training in ecology. Ecosphere 7:e01394. https://doi.org/
10.1002/ecs2.1394

Tredennick AT, Hooker G, Ellner SP, Adler PB (2021) A practical guide to
selecting models for exploration, inference, and prediction in ecology.
Ecology 102:e03336. https://doi.org/10.1002/ecy.3336

Van Cleemput E, Adler PB, Suding KN, Rebelo AJ, Poulter B, Dee LE (2025)
Scaling-up ecological understanding with remote sensing and causal infer-
ence. Trends in Ecology & Evolution 40:122–135. https://doi.org/10.1016/
j.tree.2024.09.006

Verbesselt J, Hyndman R, Newnham G, Culvenor D (2010) Detecting trend and
seasonal changes in satellite image time series. Remote Sensing of Environ-
ment 114:106–115. https://doi.org/10.1016/j.rse.2009.08.014

Verbesselt J, Zeileis A, HeroldM (2012) Near real-time disturbance detection using
satellite image time series. Remote Sensing of Environment 123:98–108.
https://doi.org/10.1016/j.rse.2012.02.022

Wainwright CE, Wolkovich EM, Cleland EE (2012) Seasonal priority effects: impli-
cations for invasion and restoration in a semi-arid system. Journal of Applied
Ecology 49:234–241. https://doi.org/10.1111/j.1365-2664.2011.02088.x

White ER, Hastings A (2020) Seasonality in ecology: progress and prospects in
theory. Ecological Complexity 44:100867. https://doi.org/10.1016/j.
ecocom.2020.100867

Wohl E (2021) Legacy effects of loss of beavers in the continental United States.
Environmental Research Letters 16:025010. https://doi.org/10.1088/1748-
9326/abd34e

Wohl E, Rathburn S, Dunn S, Iskin E, Katz A, Marshall A, Means-Brous M,
Scamardo J, Triantafillou S, Uno H (2024) Geomorphic context in process-
based river restoration. River Research and Applications 40:322–340.
https://doi.org/10.1002/rra.4236

Restoration Ecology 13 of 14

Time series analysis to assess restoration

 1526100x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/rec.70184 by C

arolyn K
oehn - B

O
ISE

 ST
A

T
E

 U
N

IV
E

R
SIT

Y
 A

L
B

E
R

T
SO

N
S L

IB
R

A
R

Y
 , W

iley O
nline L

ibrary on [27/08/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.18637/jss.v023.i03
https://doi.org/10.1016/j.tree.2020.08.018
https://doi.org/10.1016/j.ijrobp.2021.12.011
https://doi.org/10.1016/j.jclinepi.2023.10.003
https://doi.org/10.1007/s40745-023-00510-3
https://doi.org/10.1890/110267
https://doi.org/10.1890/110267
https://doi.org/10.1126/science.aba8232
https://cran.r-project.org/web/packages/Rbeast/Rbeast.pdf
https://cran.r-project.org/web/packages/Rbeast/Rbeast.pdf
https://www.ipbes.net/system/files/2021-06/2020%20IPBES%20GLOBAL%20REPORT(FIRST%20PART)_V3_SINGLE.pdf
https://www.ipbes.net/system/files/2021-06/2020%20IPBES%20GLOBAL%20REPORT(FIRST%20PART)_V3_SINGLE.pdf
https://www.ipbes.net/system/files/2021-06/2020%20IPBES%20GLOBAL%20REPORT(FIRST%20PART)_V3_SINGLE.pdf
https://doi.org/10.1016/j.ecolind.2023.111445
https://doi.org/10.1371/journal.pone.0205156
https://doi.org/10.1111/rec.13218
https://doi.org/10.1016/j.rse.2022.113222
https://doi.org/10.1016/j.rse.2022.113222
https://doi.org/10.1002/ldr.4934
https://doi.org/10.1016/j.apgeog.2023.103143
https://doi.org/10.1016/j.apgeog.2023.103143
https://doi.org/10.3390/rs13163308
https://doi.org/10.1111/rec.13724
https://doi.org/10.1016/j.scitotenv.2022.157428
https://doi.org/10.5751/ES-08521-210243
https://doi.org/10.1126/science.1246752
https://doi.org/10.1126/science.1246752
https://www.r-project.org/
https://www.r-project.org/
https://doi.org/10.1111/brv.12697
https://doi.org/10.1111/brv.12697
https://doi.org/10.1111/rec.13541
https://doi.org/10.1111/ele.70053
https://doi.org/10.1038/s41467-022-31102-z
https://doi.org/10.1038/s41467-022-31102-z
https://doi.org/10.1016/j.ancene.2022.100334
https://doi.org/10.1007/s10980-017-0575-y
https://doi.org/10.1111/gcb.16136
https://doi.org/10.1002/ecs2.1394
https://doi.org/10.1002/ecs2.1394
https://doi.org/10.1002/ecy.3336
https://doi.org/10.1016/j.tree.2024.09.006
https://doi.org/10.1016/j.tree.2024.09.006
https://doi.org/10.1016/j.rse.2009.08.014
https://doi.org/10.1016/j.rse.2012.02.022
https://doi.org/10.1111/j.1365-2664.2011.02088.x
https://doi.org/10.1016/j.ecocom.2020.100867
https://doi.org/10.1016/j.ecocom.2020.100867
https://doi.org/10.1088/1748-9326/abd34e
https://doi.org/10.1088/1748-9326/abd34e
https://doi.org/10.1002/rra.4236


Zhao K, Wulder MA, Hu T, Bright R, Wu Q, Qin H, et al. (2019) Detecting
change-point, trend, and seasonality in satellite time series data to track
abrupt changes and nonlinear dynamics: a Bayesian ensemble algorithm.
Remote Sensing of Environment 232:111181. https://doi.org/10.1016/j.
rse.2019.04.034

Zhu Z (2017) Change detection using landsat time series: a review of frequencies,
preprocessing, algorithms, and applications. ISPRS Journal of Photogram-
metry and Remote Sensing 130:370–384. https://doi.org/10.1016/j.
isprsjprs.2017.06.013

Zhu Z, Woodcock CE (2014) Continuous change detection and classification of
land cover using all available Landsat data. Remote Sensing of Environ-
ment 144:152–171. https://doi.org/10.1016/j.rse.2014.01.011

Supporting Information
The following information may be found in the online version of this article:

Table S1. Requirements for each method of analysis, description, and key citations.
Table S2. A non-exhaustive list of remote sensing time series products that can be
used as outcome datasets.
Figure S1. BCP outputs on a per pixel basis with the project area overlaid in black in
all panels.
Figure S2. Multivariate—BCP output using PDSI as a predictor as well as time.
Figure S3. BFAST output.
Figure S4. BFAST outputs on a per pixel basis with the project area overlaid in black
in all panels.
Figure S5. BEAST outputs on a per pixel basis with the project area overlaid in black
in all panels.
Figure S6. Same as Figure 5 without accounting for the missing data period (2016).
Figure S7. Same as Figure S6 but allowing the precision parameter (inverse gamma
distribution) to vary randomly for each trend and season with a uniform distribution.
Figure S8. An alternate way to model our time series in BEAST to compare to
Figure 7.
Figure S9. Same as Figure 6 without accounting for the missing data (2016).
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